Modeling of Electric Stimulation in a Three-Dimensional Isotropic Bidomain RC-Medium: a Rectangular Current Stimulus Case
نویسنده
چکیده
Laplace equations were used for modeling of electrotonic potential in three-dimensional isotropic double-space RC medium. Solutions of Laplace equations for the case of rectangular current pulse stimulation using spherical electrode we obtain using Laplace transforms in imaginary space. Solutions in original space we got using numerical invert Laplace transform. It showed that the rising front of the transmembrane potential becomes less steep in regard to rising radius of the stimulating electrode and asymptotically reaches single-dimensional cable case (evenly distributed RC-circuit). The steady state value of transmembrane potential decreases with the increasing distance from stimulating electrode. It remains always positive when stimulus current is negative.
منابع مشابه
Perturbative Approach to Calculating the Correlation Function of bi-isotropic Metamaterials
A bi-isotropic magneto-electric metamaterials is modeled by two independent reservoirs. The reservoirs contain a continuum of three dimensional harmonic oscillators, which describe polarizability and magnetizability of the medium. The paper aimed to investigate the effect of electromagnetic field on bi-isotropic. Starting with a total Lagrangian and using Euler-Lagrange equation, researcher cou...
متن کاملAnalytic Modeling of Neural Tissue: I. A Spherical Bidomain
Presented here is a model of neural tissue in a conductive medium stimulated by externally injected currents. The tissue is described as a conductively isotropic bidomain, i.e. comprised of intra and extracellular regions that occupy the same space, as well as the membrane that divides them, and the injection currents are described as a pair of source and sink points. The problem is solved in t...
متن کاملMixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements
Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...
متن کاملCoupled BE-FE Scheme for Three-Dimensional Dynamic Interaction of a Transversely Isotropic Half-Space with a Flexible Structure
The response of structures bonded to the surface of a transversely isotropic half-space (TIHS) under the effect of time-harmonic forces is investigated using a coupled FE-BE scheme. To achieve this end, a Finite Element program has been developed for frequency domain analysis of 3D structures, as the first step. The half-space underlying the structure is taken into consideration using a Boundar...
متن کاملElasto-Thermodiffusive Response in a Two-Dimensional Transversely Isotropic Medium
The present article investigates the elasto-thermodiffusive interactions in a transversely isotropic elastic medium in the context of thermoelasticity with one relaxation time parameter and two relation time parameters. The resulting non-dimensional coupled equations are applied to a specific problem of a half-space in which the surface is free of tractions and is subjected to time-dependent th...
متن کامل